
Beating Vegas in NBA
Predictive Modeling

Chapman Beaird, Josh Chambers, Mason
Hamilton, Darren Skidmore

Abstract

The National Basketball Association, founded in
1946, is the most prestigious professional
basketball league in the United States and the
world. The NBA has risen in popularity over the
last several decades thanks to transformative
players like Michael Jordan, LeBron James, and
Stephen Curry, amassing fans globally. As is the
case with any major sports league, significant
attention is given to advanced stats beyond the
box score, which can be used to estimate which
team will win any given game and by what margin.
Optimizing these predictions can help paint a
picture about which teams truly are the best and
the worst, and if designed well enough, can even
make a profit from betting markets.

1 Introduction

The intent of this project was to attempt to create
a number of machine learning models that could
predict the actual result of a point spread for NBA
games. In all major sports leagues, betting is
involved as an activity for people to test their
intuition and luck against other sports bettors,
follow games closely, and ultimately waste their
money on a fruitless endeavor. Nevertheless,
Vegas odds (the colloquial term for sports betting
figures) are an interesting metric to gauge who
might win a game and by how much. In this case,
we are looking at classifying the point spread,
which is used to estimate how many points a
certain team will win or lose by.

Point spreads are written as a positive or negative
number which can either be a full or half decimal
(e.g., -8.5, 6.0, 12.5) describing how many points
is team X predicted to win by (note that negative
numbers correspond to a winning margin.) After a
game ends, the true margin is compared to the
predicted point spread and those who predicted
the correct “side” will receive a payout, while
those who guessed incorrectly essentially lose
their money.

Point spreads are maintained by sports bettors,
who are often expert statisticians with years of
experience in the field. Therefore, this project is a
bit unique because it is not viable to make a huge
profit against the house; the objective is simply to
get slightly above or equal to 50% accuracy. In
our research, we found that 52.4% accuracy and
above will result in a significant net gain in profit
(Byrnes & Farinella, 2016)—thereby beating Vegas.

2 Methods

2.1 Data

We used two data sources to obtain our data. The
first was Sportsbook Reviews Online which
contained point spreads for almost all NBA games
between 2007-10-30 to 2023-01-16. Although it is
unclear why the data abruptly stopped in the 2023
season, we were still able to get pre-game point
spreads for 19,807 games. The data were stored
in the form of HTML tables. We used the Python
library requests to download the HTML data and
parsed the table into a dataframe using pandas.
From there, we extracted the team names, dates,
and listed point spread, exporting it to a CSV file.

The second data source was the NBA’s official
website, for which we used the Python library
nba_api to quickly retrieve data in JSON format.
We retrieved all games between 2004-11-02 to
2024-04-07. The data from this API included
essential team attributes like the score, total

https://www.sportsbookreviewsonline.com/scoresoddsarchives/nba-odds-2022-23/
https://github.com/swar/nba_api


rebounds, total field goals made, etc. and were
henceforth exported to CSV.

From there, the two datasets were combined in
one using a simple pandas left-join. A few more
features were computed, including the actual
point margin and the Elo score for both teams.
There were a total of 44 features. If a regression
algorithm was used, the float feature
HomeSpreadActual was used as the target. If a
classification algorithm was used, the boolean
feature HomeSpreadCorrectDirection was used
instead.

The final process involved adjusting the features
for a given game to reflect the results of previous
games. If you use the actual statistics of that
current game, it defeats the point of predicting the
victor. Therefore, we opted to utilize a
hyperparameter vector that would weight results
from a certain number of previous games and use
that as the actual values. The default vector we
selected was [0.4, 0.3, 0.2, 0.1] where
index n corresponds to n+1 games ago.

2.2 Elo Score

Elo is a statistical metric originally developed for
chess that aims to quantify players or groups on
their ability level. In a nutshell, an average Elo is
1500 with a standard deviation of around 100. All
teams’ Elo scores were set to a mean of 1500
beginning on 2004-11-02 and computed to
2024-04-07. In the event of the season ending, all
teams were slightly regressed to the mean by
25%. This algorithm was adapted from
FiveThirtyEight and was used as the primary
feature for assessing a team’s ability level (Silver &
Fischer-Baum, 2015.)

Fig. 1 — Formulae for computing Elo

2.3 Selected Models

We used the following models: K-Nearest
Neighbors (classifier and regression), Decision
Tree classifier, XBoost, and MLP Classifier. Each
group member worked on one model. A variation
of models was chosen to test a diversity of
possible ways to solve this problem and to give
more opportunities to reach a very high accuracy.
We opted to use a train/test split of 0.8 and 0.2
respectively as those are considered
industry-standard figures and changing them
rarely results in any significant variation.

3 Initial Results

3.1 K-Nearest Neighbors

The K-Nearest Neighbors regression model was
initially run with the default results weighting
hyperparameter, a variation of k-values in [2,
10], and all combinations of feature normalization
and weighting (either distance or uniform).

We found that the best results occurred as k
increased and there was no normalization nor
weighting. This is a fascinating find because many
might assume that normalization and weighting

https://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/


are automatically better. However, this shows that
some values with higher absolute magnitudes
(e.g., Elo, points scored) are more important to the
model than values with lower absolute
magnitudes. The best recorded MAE (mean
absolute error) values were around 9.7, showing
that the final scoring margin of a game was
predicted incorrectly by an average of 9.7 points.
This is however a slight improvement over the
historical average margin of 11.2 points,
demonstrating that some degree of learning is
taking place.

Fig. 2 — Initial MAE (mean absolute error)
chart for K-nearest neighbors regression

The K-nearest neighbors classifier was then used
to calculate the accuracy of predicting the point
spread. Once again, all k-values in the range [2,
10] were tested both with and without
normalization.

As was seen in the regression problem, the
non-normalized data significantly outperformed
the normalized data. The average accuracy for
non-normalization was 51.3%. This is not enough
to make a profit, but it is better than a random
coin flip. The normalized data had an average
accuracy of only 50.0%.

Fig. 3 — Initial accuracy chart for K-nearest
neighbors classification

3.2 Decision Tree

As mentioned in 3.1, the use of normalized and or
weighting caused the accuracy of our Decision
Tree model to decrease. As a result, we used
non-normalized and no weighting in our model.

When our Decision Tree model was first
generated, we decided to stay within the bounds
of the vanilla model to create a good base level in
which to compare improvements and
hyperparameters to. As a result, on the Decision
Tree model with no adjustments, we achieved an
accuracy of around 50.8% to 51.2%.

3.3 XGBoost

The initial application of the XGBoost model
demonstrated somewhat promising capabilities.
Using default settings, we got an accuracy of
around 51% (only slightly better than random
guessing). This was a solid foundation giving us
much hope to what this model could yield.

The XGBoost model was also evaluated based on
the confusion matrix. It appears to be the case
that the distribution is almost identical. The
difference between the false positives and true
negatives is only one instance.



The F1-score we received stands at
approximately 0.51 for both classes. This confirms
that the model has a moderate ability to predict
both classes without bias to either.

3.4 MLP Classifier

For initial tests of the MLP Classifier, the vanilla
model with all of its default settings was used to
get a basis for what the low end accuracy would
be before parameters were tested and tweaked to
bring up the accuracy. We found that, on average,
this model would return an accuracy between
48.6% and 49.7% when it was run on new data.
Training and test accuracies on the established
data were generally between 50% and 52.4%.

4 Feature/Model Improvements

4.1 K-Nearest Neighbors

In order to try to improve our results, we decided
to stick to non-normalized data without weighting
and adjust other hyperparameters. We opted to
use a GridSearch to find the optimum parameters.

After running a GridSearch with k=10, the optimal
parameters were found to be the “auto” algorithm
with p=4 and uniform weights. However, the
accuracy dipped slightly to 51.1%.

We also attempted to adjust the rolling average
vector to different values, including [1], [0.7,
0.2, 0.1], [0.55, 0.35, 0.1], and [0.16,
0.15, 0.14, 0.13, 0.12, 0.11, 0.1, 0.09].
However, no changes in accuracy were observed,
and the peak accuracy remained 51.6%.

4.2 Decision Tree

As discussed in 4.1, our Decision Tree results
were derived from non-normalized data without

weighting. We ran GridSearch to find the optimum
parameters and the results were mixed.

When we first attempted to make improvements,
we adjusted the max_depth to 3. Almost instantly
we were able to see an increase from an average
accuracy hovering around the 50.4-51% mark to
an astounding 53.2% accuracy. In a game of
inches, this means a lot.

To further test our model, we ran GridSearch
multiple times, each with a slight variation of the
previous parameters. Surprisingly, as with
K-Nearest Neighbors, GridSearch did not improve
accuracy and more often than not, decreased it.

We noticed throughout testing that accuracy was
highly dependent on max_depth and came to the
conclusion that this was the only parameter that
noticeably affected our results.

Fig. 4 — Decision Tree with depth 3

4.3 XGBoost

As discussed in previous sections, the results
were derived from non-normalized data without
weighting. Adjusting the XGBoost model involved
fine-tuning the hyperparameters through
GridSearch. We ran GridSearch on the XGBoost
model with various different parameters to find the
optimal parameters for this model.



The grid search was run with various different
parameters like max_depth, learning_rate, etc. It
fitted 5 folds for each of the 243 candidates which
resulted in 1215 total fits. We found it to be the
case that the best parameters were
colsample_bytree = 0.7, learning_rate=0.01,
max_depth=3, n_estimators=300, and
subsample=0.8. It is interesting to note that the
optimal max_depth is 3 which is the same optimal
parameter found in our decision tree model. With
these parameters, we found that the best score
was about 54.1%. This is a pretty notable
improvement from our base model with no
improvements done on it which yielded an
accuracy of around 51%.

4.4 MLP Classifier

Reiterating what was covered in the other
sections, the results were derived from
non-normalized data without weighting. When
improving the MLP classifier, we focused on three
parameters: early stopping, alpha value, and
learning rate. Of the three, early stopping had the
most impact on the models, with each iteration
performed, on average, 2.3% better than when
early stopping was not utilized.

While running several iterations of models with
different values for alpha and learning rate we
were able to determine that using a higher number
than the defaults resulted in better results.
Anything smaller than the default would usually
result in overfitting. Our tests determined that an
alpha value of 0.001 and a learning rate of 0.001
resulted in better overall accuracy, with the
accuracy for new data sitting between 50% and
51.7%, with some outliers reaching up to 52.7%.

5 Final Results

5.1 K-Nearest Neighbors

Because GridSearch did not result in an
improvement, it can be concluded that for KNN
classification, most parameters do not
significantly alter the accuracy aside from
unnormalized data which has an undoubtedly
better accuracy than normalized. Because
accuracy was generally in the 51.1-51.6% range,
the KNN model as designed in this way is unlikely
to be effective for making a profit in the markets.

5.2 Decision Tree

Through our testing, we were able to conclude
that, like mentioned in 5.1, unnormalized data
performed drastically better than normalized and,
as referenced in 4.2, max_depth was the only
significant parameter in our model. To our
surprise, with an accuracy in the range of 53.1%
to 53.4%, our model should generate revenue if
run on the market.

5.3 XGBoost

Through our testing and manipulating of
parameters for the XGBoost model, we can
conclude that the model demonstrated significant
improvements. The final iteration of the model
achieved an accuracy of 54.1% which surpasses
the threshold of 52.4% generally required for
profitability in sports betting markets.

5.4 MLP Classifier

After testing our model and implementing
improvements to it, we were unable to
consistently achieve the threshold of 52.4%.
While the results were much better than the vanilla
models, we aren’t confident that it could produce
accurate enough results to be an improvement
over the current method for spreads.



Other parameters that were tested were the
number of hidden layers as well as the
momentum, but these were solely through
observing iterations and would need to be more
thoroughly tested before implementation. While
current metrics are not within range, the results
could be fine tuned with further research.

6 Discussion and Conclusion

Our models gave us good insight into the
underlying data as well as the nature of the field.
As noted in Section 5, while XGBoost and
Decision Tree produced superior results, all
models performed with over 50% accuracy. We
found this interesting because it shows that AI
Models do work. They produce results that,
although may be profitable in our case, beat 50/50
bets. On that note, we also learn that some
models perform better than others on specific
datasets. XGBoost and Decision Tree did so in our
case. This may be the case for a number of
reasons, but some of which may be that they are
non-linear models, less influenced by outliers, and
regulations to help prevent overfitting.

With great power comes … great risk. As much as
we want to employ the Decision Tree or XGBoost
models and make our millions, it seems a little too
good to be true. For this reason, we have not
taken it to the market.

7 Future Work

The most glaring absence in our models is using
feature reduction methods such as PCA to identify
which features are the most impactful on the
learning process. Based on the large difference of
the performance between un-normalized and
normalized data, some features with greater
absolute magnitude are clearly among the most
important (as they are exemplified in the case of
un-normalized data.) Feature reduction may help

reduce attributes of lesser importance and lead to
accuracy even beyond what we have obtained.

We would also want to consider trying other
models such as an MLP regressor and Naive
Bayes classifier to gain an even greater scope into
the understanding of how our data interacts with
various models.

References

Byrnes, T. T., & Farinella, J. A. (2016). The effect of
momentum on the NBA point spread market.
The Sport Journal, 19, 1-9.

Silver, N., & Fischer-Baum, R. (2015, May 21).
How we calculate NBA Elo ratings.
FiveThirtyEight.
https://fivethirtyeight.com/features/how-we-c
alculate-nba-elo-ratings/

Appendix A Attribute List

Using default rolling average hyperparameters —
values do not significantly vary with other settings.

MAX MIN

ELO_AWAY 1849.6679 1184.2628

ELO_HOME 1850.2002 1186.7542

MIN_AWAY_RA 291.8 171.6

MIN_HOME_RA 287.9 171.4

PTS_AWAY_RA 145.4 72.5

PTS_HOME_RA 141 71.9

FGM_AWAY_RA 53.2 23

FGM_HOME_RA 52.8 24.3

FGA_AWAY_RA 107.2 61.5

FGA_HOME_RA 105.1 65.8

https://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/
https://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/


FG_PCT_AWAY_RA 0.5881 0.3193

FG_PCT_HOME_RA 0.5926 0.3357

FG3M_AWAY_RA 23.6 0.8

FG3M_HOME_RA 23 0.5

FG3A_AWAY_RA 62 4.2

FG3A_HOME_RA 56 3.5

FG3_PCT_AWAY_RA 0.6522 0.0972

FG3_PCT_HOME_RA 0.6393 0.0686

FTM_AWAY_RA 36.1 6.7

FTM_HOME_RA 36.5 6

FTA_AWAY_RA 45 8.7

FTA_HOME_RA 48.8 7.5

FT_PCT_AWAY_RA 0.9619 0.4609

FT_PCT_HOME_RA 0.9802 0.4451

OREB_AWAY_RA 24.2 3.1

OREB_HOME_RA 22.9 3.5

DREB_AWAY_RA 50.1 19.6

DREB_HOME_RA 49.5 18.7

REB_AWAY_RA 59.7 27.3

REB_HOME_RA 59.5 27.1

AST_AWAY_RA 39.5 10.9

AST_HOME_RA 38.8 11

STL_AWAY_RA 15.3 1.7

STL_HOME_RA 15.8 2.1

BLK_AWAY_RA 13.1 0.4

BLK_HOME_RA 12.5 0.5

TOV_AWAY_RA 24.4 5.6

TOV_HOME_RA 24.5 5.7

PF_AWAY_RA 32.5 11.4

PF_HOME_RA 33.2 10.8

PLUS_MINUS_AWAY_RA 34.4 -35.4

PLUS_MINUS_HOME_RA 38.9 -33.9

HomeSpreadActual 58 -73

HomeSpreadCorrectDirection 1 0

Appendix B Source Code

https://github.com/darrenrs/cs270-nbaproj

https://github.com/darrenrs/cs270-nbaproj

